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The Debye-Stokes-Einstein �DSE� model of rotational diffusion predicts that the orientational correlation
times �l vary as �l�l+1��−1, where l is the rank of the orientational time correlation function �given in terms of
the Legendre polynomial of rank l�. One often finds significant deviation from this prediction, in either
direction. In supercooled molecular liquids where the ratio �1 /�2 falls considerably below 3 �the Debye limit�,
one usually invokes a jump diffusion model to explain the approach of the ratio �1 /�2 to unity. Here we show
in a computer simulation study of a standard model system for thermotropic liquid crystals that this ratio
becomes much less than unity as the isotropic-nematic phase boundary is approached from the isotropic side.
Simultaneously, the ratio �2 /�, � being the shear viscosity of the liquid, becomes much larger than the
hydrodynamic value near the I-N transition. We also analyze the breakdown of the Debye model of rotational
diffusion in ratios of higher order orientational correlation times. We show that the breakdown of the DSE
model is due to the growth of orientational pair correlation and provide a mode coupling theory analysis to
explain the results.

DOI: 10.1103/PhysRevE.73.031705 PACS number�s�: 61.30.�v, 66.10.Cb

I. INTRODUCTION

The rotational diffusion model of Debye �1,2� was pro-
posed originally to explain dielectric relaxation of polar mol-
ecules. For large Brownian particles reorienting in a liquid in
small steps, the Debye model predicts an exponential decay
for the lth rank single-particle orientational time correlation
function �OTCF� Cl

s�t�

Cl
s�t� = exp�− t/�l� , �1�

and gives for the corresponding orientational correlation time
�l

�l =
1

l�l + 1�Dr
, �2�

where Dr is the rotational diffusion coefficient. The latter is
predicted to be coupled with the shear viscosity � at any
temperature T by the Debye-Stokes-Einstein �DSE� relation-
ship that relies upon hydrodynamic assumptions

Dr =
kBT

VH�
. �3�

The hydrodynamic volume VH is related to the molecular
volume v through a factor that depends on the shape of the
reorienting particle and the boundary conditions. For ex-
ample, VH=6v for a sphere with stick boundary conditions.
In spite of the involvement of hydrodynamic assumptions,
the DSE relationship is known to be effective down to the
molecular length scales for low-viscosity liquids. The DSE
relationship has been found to work well when tested in
experiments and simulations for dependence on shape, size,

and boundary conditions in low-viscosity simple as well as
complex liquids �3–5�.

It follows that the Debye model of rotational diffusion
predicts the �l�l+1��−1 dependence for �l, and specifically the
ratio of the first and second-rank orientational correlation
times, �1 /�2, to be equal to 3. A significant deviation from
this ratio is taken to be the signature of the breakdown of the
Debye model �6�. In particular, the ratio is known to ap-
proach unity at temperatures close to the glass transition tem-
perature Tg in supercooled liquids �7,8�. One often relates the
emergence of hopping involving large angular jumps to this
breakdown of Debye diffusion model, which requires small
angle Brownian rotational motion for its validity �8�. The
basic idea is that a large jump leads to the decay of Cl

s�t� of
all ranks l at the same time, so that all of them have similar
correlation times corresponding to the average waiting time
for this large jump to occur.

The DSE relationship was found to conform well to the
experimental data from NMR studies �9,10� and time-
resolved optical spectroscopy using photobleaching tech-
niques �11,12� even in highly viscous supercooled liquids
close to Tg. This is often discussed in the context of
translation-rotation decoupling in supercooled liquids and
the relevant issues have drawn considerable attention
�13–18�. However, a number of experimental and computa-
tional studies provided evidence for the failure of the DSE
relationship at high viscosities in supercooled molecular liq-
uids and glassy polymers �19–23�. An overestimation of the
orientational correlation times by the DSE relationship was
apparent from time resolved fluorescence and electron spin
resonance �ESR� studies on tracer reorientation �23,24�. It is
notable that an ESR study revealed jump motion for reorien-
tation of the probe at the temperature regime where probe
reorientation was found to get decoupled from the viscosity
according to ESR studies �22,25�.

The case of �1 /�2 deserves particular attention because it
is the oft-discussed one, both �1 and �2 being experimentally*Electronic address: bbagchi@sscu.iisc.ernet.in
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accessible �6–8�. However, the sensitivity of the respective
OTCFs �and hence the corresponding orientational correla-
tion times� to intermolecular interactions is different. When
the rotating molecule has dipolar interactions with the sur-
rounding molecules, one expects the first rank OTCF to be
more affected than the second rank one. This is a manifesta-
tion of long-range intermolecular correlation which is re-
flected in the orientational pair correlation functions. Thus, if
we consider dipolar spheres �such as Stockmayer liquid�, we
should expect the ratio �1 /�2 to be larger than three �26�. On
the other hand, if the intermolecular interaction has up-down
symmetry �as is the case with ellipsoids of revolution�, the
reverse could be true.

One ideal candidate to test the above argument regarding
the role of equilibrium pair correlations is a system of model
mesogens undergoing the isotropic-nematic �I-N� phase tran-
sition. The isotropic phase is both positionally and orienta-
tionally disordered while the nematic phase is still position-
ally disordered but orientationally ordered. The orientational
order parameter, defined by S= �P2�cos�����, � being the
angle between the molecular axis getting ordered with the
director, serves to characterize the I-N transition. In the
isotropic phase, S=0 for infinitely large systems �for
N-particle system, S�1/�N� while it is nonzero �around 0.5�
in the nematic phase. The important point is that orienta-
tional correlation undergoes rapid increase as the I-N phase
boundary is approached from the isotropic side. This large
growth in correlation would provide a testing ground of the
rotational diffusion model and would throw light on the role
of intermolecular correlations. Recent experimental and
simulation studies have revealed striking resemblance in ori-
entational relaxation between the isotropic phase of thermo-
tropic liquid crystals near the I-N transition and supercooled
molecular liquids �27–33�. In view of this, the study of such
a system would allow us to compare the behavior with what
is typically observed in supercooled liquids.

Computer simulation using molecular models has proved
to be useful to study orientational dynamics near the I-N
transition. In a molecular dynamics simulation study with the
Gay-Berne pair potential �34�, de Miguel et al. found the
ratio �1 /�2 to be always less than 3 in the isotropic phase.
They found that the departure from the Debye limit was pro-
nounced when density was reduced or temperature was in-
creased. Vasanthi et al. in extensive molecular dynamics
simulations using the same model studied the aspect ratio
dependence of the hydrodynamic prediction of translational-
rotation coupling �35�. Recently Jose and Bagchi have tested
the DSE relationship near the I-N phase transition in a sys-
tem of the Gay-Berne ellipsoids of revolution �36�. They
have shown that the DSE relation between the rotational fric-
tion and viscosity breaks down near the I-N phase transition.

In this work, we have investigated the rank dependence of
orientational relaxation in a system of Gay-Berne ellipsoids
of revolution near the I-N phase boundary in close connec-
tion with the Debye rotational diffusion model. The motiva-
tion of the present work comes partly from recent reports of
the observed similarity in the orientational relaxation be-
tween thermotropic liquid crystals and supercooled molecu-
lar liquids �27–33�. We find that the ratio �1 /�2 becomes
much less than unity as the I-N phase boundary is

approached from the isotropic side. Simultaneously, the ratio
�2 /� becomes much larger than the hydrodynamic value near
the I-N transition. We have also analyzed the breakdown of
the Debye model of rotational diffusion in ratios of higher
order orientational correlation times. We have provided a
mode coupling theory analysis to explain the results. Theo-
retical analysis shows that the breakdown of the DSE model
can be attributed to the growth of orientational pair correla-
tion. Thus, the present analysis seems to suggest that one
does not always need to invoke large scale jump diffusion to
explain the decrease of the ratio �1 /�2 from the Debye limit.

In the next section, we describe the system and simulation
details. Results of our molecular dynamics simulation study
of a system of ellipsoids of revolution with an aspect ratio
equal to 3 along an isotherm and an isochore across the
I-N phase transition are presented in Sec. III. These results
show that the ratio �1 /�2 can become much less than unity.
This section also includes results for higher rank orienta-
tional time correlation functions. In Sec. IV, we present a
theoretical analysis that can explain several aspects of these
results. Section V provides a summary of our results and
concluding remarks.

II. SYSTEM AND SIMULATION DETAILS

Here we consider a system of molecules with axial sym-
metry interacting with the Gay-Berne �GB� pair potential
that has served as a standard model in the simulation studies
of thermotropic liquid crystals. In the GB pair potential
�37,38�, each molecule is assumed to be an ellipsoid of revo-
lution having a single-site representation in terms of the po-
sition ri of its center of mass and a unit vector ei along its
principal axis of symmetry. The GB interaction between
molecules i and j is given by

Uij
GB�rij,ei,e j� = 4��r̂ij,ei,e j���ij

−12 − �ij
−6� , �4�

where

�ij =
rij − ��r̂ij,ei,e j� + �0

�0
. �5�

Here �0 defines the cross-sectional diameter, rij is the dis-
tance between the centers of mass of molecules i and j, and
r̂ij =rij /rij is a unit vector along the intermolecular separation
vector rij. The molecular shape parameter � and the energy
parameter � both depend on the unit vectors ei and e j as well
as on r̂ij as given by the following set of equations:

��r̂ij,ei,e j� = �0	1 −
�

2

 �ei · r̂ij + e j · r̂ij�2

1 + ��ei · e j�

+
�ei · r̂ij − e j · r̂ij�2

1 − ��ei · e j�
��−1/2

�6�

with �= �	2−1� / �	2+1� and

��r̂ij,ei,e j� = �0��1�ei,e j��
��2�r̂ij,ei,e j���, �7�

where the exponents � and 
 are adjustable, and

�1�ei,e j� = �1 − �2�ei · e j�2�−1/2 �8�

and
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�2�r̂ij,ei,e j� = 1 −
��

2
	 �ei · r̂ij + e j · r̂ij�2

1 + ���ei · e j�
+

�ei · r̂ij − e j · r̂ij�2

1 − ���ei · e j�
�

�9�

with ��= �	�1/�−1� / �	�1/�+1�. Here 	=�ee /�ss is the aspect
ratio of the molecule with �ee denoting the molecular length
along the major axis and �ss=�0, and 	�=�ss /�ee, where �ss
and �ee are the depth of the minima of potential for a pair of
molecules aligned parallel in a side-by-side configuration
and end-to-end configuration, respectively. It follows that the
GB pair potential defines a family of potential models, each
member of which is characterized by a set of four parameters
�	 ,	� ,� ,
�. In the present work, we employ the Gay-Berne
pair potential with the original and most studied parametri-
zation �3,5 ,2 ,1� �39�.

All quantities are given in reduced units defined in terms
of the Gay-Berne potential parameters �0 and �0: length in
units of �0, temperature in units of �0 /kB, and time in units of
�m�0

2 /�0�1/2, m being the mass of the ellipsoids of revolution.
We set the mass as well as the moment of inertia of the
ellipsoids equal to unity. The simulation is run in a microca-
nonical ensemble with the system in a cubic box with peri-
odic boundary conditions. Further details of the simulation
can be found elsewhere �31�.

The system of Gay-Berne ellipsoids of revolution with
aspect ratio 3 has been studied separately along an isotherm
with density variation and along an isochore with tempera-
ture variation across the I-N transition. As compared to the
density driven transition, the temperature driven I-N transi-
tion in the present system is known to be rather diffuse �39�.
Next we present the results of our study.

III. RESULTS

A. Density variation along an isotherm

In Fig. 1, we show the orientational order parameter
variation with density as a system of 576 Gay-Berne ellip-
soids of revolution transits across the I-N transition along an

isotherm at temperature T*=1. The phase transition is found
to occur over a range of densities between 0.305 and 0.315.
In Figs. 2�a� and 2�b�, we show the decay of the single-
particle OTCFs for the first eight ranks in the isotropic phase
and near the I-N phase boundary, respectively. The lth rank
single-particle OTCF is defined as

Cl
s�t� =


i

Pl�êi�0� . ei
ˆ �t��


i

Pl�êi�0� . ei
ˆ �0��

, �10�

where êi�0� is the unit vector along the symmetry axis of the
ith ellipsoid of revolution. The Debye model is found to hold
good for all ranks of the single-particle OTCFs shown in Fig.
2�a� in the isotropic phase. As the rank of the correlation
function increases, the relaxation time decreases.

Near the I-N phase boundary, as shown in Fig. 2�b�, the
relaxation of the single-particle OTCFs slows down consid-
erably for all ranks. However, Cl

s�t� is affected differently for
different l values. The even and the odd lth OTCFs behave
differently with the appearance of a pronounced plateau in
C2

s�t� and C4
s�t�. Such emergence of plateau is akin to what is

observed for OTCFs in supercooled liquids at low tempera-
tures �18,22�.

Figure 2�b� shows that although the initial decay of C2
s�t�

and C4
s�t� is faster than that of C1

s�t� and C3
s�t�, respectively,

the decay becomes slower at longer times. The even lth cor-

FIG. 1. The evolution of the orientational order parameter with
density along the isotherm at temperature T�=1.

FIG. 2. The time evolution of the single-particle orientational
time correlation functions, whose ranks range from 1 to 8, shown in
a log-log plot at two densities corresponding to �a� �*=0.285; �b�
�*=0.315. The curves are arranged in the decreasing order of ranks
from the bottom to the top near the vertical axis in each plot.
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relation functions both develop a rather long and distinct
plateau. The decay of C4

s�t� is particularly revealing because
it shows all the four phases of decay—the initial Gaussian,
followed by the exponential, then the crossover to the pla-
teau and the final exponential decay.

In Fig. 3, we show the evolution of the ratios �1 /�2, �1 /�3,
and �1 /�4 as increase in density drives the system across the
I-N transition. Note that away from the I-N phase boundary
in the isotropic phase, the ratios remain close to what are
predicted by the Debye rotational diffusion model. However,
as the I-N phase boundary is approached from the isotropic
side, it is evident that the Debye rotational diffusion model
breaks down completely.

In Fig. 4, we show the ratios between the second rank
orientational correlation time and the higher rank �l=3,4�
orientational correlation times as a function of density across

the I-N transition. Note that the I-N transition affects the
second rank OTCF most due to the up-down symmetry of
the molecular model studied in the present work. Figure 4
shows a cusplike behavior which is well known in the study
of equilibrium critical phenomena of finite sized systems. Its
appearance in dynamics suggests the existence of large scale
fluctuations in the orientational order parameter �40�. Since
the second rank orientational time correlation function is as-
sociated with the optical response of the system, which un-
dergoes dramatic increase near the I-N transition �40,41�, the
most affected orientational memory function is the second-
rank one.

Microscopically this phenomenon may be understood
qualitatively in terms of the molecular field theory of Maier
and Saupe �40–42�, where the molecule is confined in an
effective field created by its neighbors. This effective poten-
tial is given by the expression

ui = −
A

V2

1

2
S�3 cos2��i� − 1� , �11�

where A is constant independent of the temperature, volume,
and pressure, V is the molecular volume, and �i is the angle
between molecular axis with a preferred axis. This effective
potential grows as the order parameter increases. Note that a
� rotation of the molecular axis relaxes C1

s�t� but not C2
s�t�.

This effect is manifested in the higher order OTCFs also.
However, a random orientation of the smaller angle less than
� /2 is only required for the relaxation of the Cl

s�t� with l
3,4 , . . ., etc. Hence the slow down of relaxation at these
ranks appears as S becomes significantly large. In Sec. IV,
we present a quantitative theory to describe these effects.

Another important aspect of the DSE which has been a
subject of intense study in the literature of supercooled liq-
uids is the viscosity ��� dependence of the time constants ��l�
of OTCFs. In Fig. 5, we present the semilog plot of this ratio
against density. The ratio remains a constant in the isotropic

FIG. 3. The density variation of the ratios between the first-rank
orientational correlation time and the second, third, and fourth rank
orientational correlation times across the I-N transition. The circles
represent the data for �1 /�2, the diamonds for �1 /�3, and the tri-
angles for �1 /�4. The ratios are scaled by the corresponding Debye
predictions. The dashed vertical line marks the position of the I-N
transition.

FIG. 4. The ratios between the second-rank orientational corre-
lation time and the higher rank orientational correlation times
across the I-N transition. The triangles represent the data for �2 /�3

and the circles for �2 /�4. The ratios are scaled by the corresponding
Debye predictions. Again the dashed vertical line marks the position
of the I-N transition.

FIG. 5. The semilog plot of the ratio �l /� versus density for
different l values. The circles show �l /� for l=1, the diamonds for
l=2, the squares for l=3, and the triangles for l=4. The filled sym-
bols show the ratios for even values of l.
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phase of the liquid crystals, in agreement with hydrodynamic
prediction. This is also in accordance with the earlier simu-
lation �36� which shows that the ratio between the rotational
friction and the viscosity also shows similar behavior.

Note that unlike in supercooled liquids, the growth in the
viscosity of the nematogens near the I-N transition is not
rapid �36�. Therefore, the ratio between �l and � deviates
from the DSE prediction largely due to the growth of �l. It is
also evident that the violation of the DSE is found to be
different for the odd and the even values of l. In Fig. 5, the
ratios between �l and � for even l values grow more dramati-
cally than that for odd l values.

B. Temperature variation along an isochore

In this work, we have also studied orientational relaxation
in a system of 500 Gay-Berne ellipsoids of revolution with
the use of the same parameterization but along an isochore at
the density ��=0.32. The drop in temperature drives the sys-
tem from the isotropic to the nematic phase with the growth
in the orientational order. In particular, the single-particle
second-rank orientational correlation function decays with
such a long time scale near the I-N phase boundary that an
integral second-rank orientational correlation time is beyond
the scope of the present simulation study. The poor data
quality at long times with the present run length restricts us
from having a reasonable fit of the long-time decay. In order
to have an estimate of the second-rank orientational correla-
tion time for the sake of comparison of the rank-dependent
orientational correlation times, we define a correlation time
�l

/�T� that is the time taken for the single-particle lth rank
OTCF to decay by 90% at a temperature T. The prime is
used to distinguish it from the corresponding integral orien-
tational correlation time.

Figure 6 shows that the ratio �1
/ /�2

/ follows the Debye
behavior away from the I-N transition, but the onset of the

rapid growth of the orientational order parameter near the
I-N transition induces a marked deviation from the Debye
limit and the ratio falls rapidly. On the other hand, the ratios
�1 /�l go through maxima on transit from the isotropic phase
to the nematic phase for both l=3 and l=4 as shown in Fig.
7, and the maxima correspond to the temperature below
which the orientational order parameter is on the rapid rise.
Figure 8 illustrates the temperature behavior of the ratios
�2

/ /�l
/ across the I-N transition for l=3 and 4. While only a

small deviation from the Debye behavior is apparent even at
high temperatures away from the I-N transition, the onset of
the growth of the orientational parameter marks a sharp in-
crease in these ratios. The results, embodied in Figs. 6–8,
suggest that orientational correlation, which builds up across
the I-N transition, plays a key role in deviation from the
Debye behavior of the orientational correlation times.

The contrast between the study along an isotherm and that
along an isochore reveals the importance of the role played
by the intermolecular potential in the breakdown of the DSE
relation. In the study along the isotherm, the free volume that

FIG. 6. The evolution of the ratio between the first-rank and the
second-rank orientational correlation times with temperature across
the I-N transition �circles�. The inclusion of the scaling factor en-
sures that the ratio is equal to unity in the Debye limit as shown by
the dot-dashed line. On a different scale shown on the right is the
orientational order parameter variation with temperature �squares�.

FIG. 7. The temperature dependence of the ratio between the
first rank and the lth rank orientational correlation times across the
I-N transition for l=3 and 4. The inclusion of the scaling factor
ensures that the ratio is equal to unity in the Debye limit as shown
by the dot-dashed line.

FIG. 8. The temperature dependence of the ratio between the
second rank and the lth rank orientational correlation times across
the I-N transition for l=3 and 4. The inclusion of the scaling factor
ensures that the ratio is equal to unity in the Debye limit as shown
by the dot-dashed line.
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is available for the rotation reduces, thus leading to the for-
mation of the orientational caging. In contrast, when tem-
perature is reduced, the attractive part of the intermolecular
potential becomes more dominant and results in the forma-
tion of the orientational caging that arrests the orientational
random walk of the molecules. The above difference arises
because temperature variation leads only to small changes in
density because of the dominance of the repulsive part of the
potential in determining the liquid structure.

IV. THEORETICAL ANALYSIS OF ORIENTATION
RELAXATION

Here we present a mode coupling theory �MCT� analysis
of the above relaxation behavior. MCT has a long and hon-
orable history in describing dynamics near phase transitions
�43–45�. Our starting point of the theoretical analysis is the
Zwanzig-Mori continued fraction representation of the fre-
quency dependent orientational time correlation function
Cl�z� �26,46–48�:

Cl
s�z� =

1

z +
l�l + 1�kBT

I�z + �l�z��

, �12�

where I is the moment of inertia and �l�z� is the Laplace
frequency �z� and rank-dependent memory function. The lat-
ter is determined by the torque-torque correlation function.
In general, it is very difficult to determine this correlation
function from first principles, but as a first approximation,
we would combine input from the mode coupling theory
with that from the time-dependent density functional theory
to obtain an expression for the memory function �l�z� which
can be used to understand the reasons for the breakdown of
the DSE model. Near the I-N transition the memory function
��z� can be written as a sum of two parts

�l�z� = �bare + �l
sing�z� , �13�

where the bare part of the memory function is assumed to be
rank and frequency independent. This can be described by
the two-body �binary� collision model. Note that in conjunc-
tion with Eq. �12�, �bare leads to the DSE behavior. The
singular part of the memory function contains effects of in-
termolecular correlation and is rank dependent. It is given by
�27,28,48�

�l
sing�z� =

3kBT�

8�3I
�

0

�

dte−zt�
0

�

dkk2
m

cllm
2 �k�Flm�k,t� .

�14�

In the above equation, �l is the rank and frequency depen-
dent memory function. This is a function of the l , l ,m com-
ponent of the wave-vector-dependent direct correlation func-
tion cllm�k� �in the intermolecular frame�. Flm�k , t� is the l ,m
component of the orientation dependent self-intermediate
scattering function. The Flm�k , t� is defined in terms of the
spherical harmonics as

Flm�k,t� = �ek·�r�t�−r�0��Ylm��,0�Ylm��,t�� . �15�

The single particle position and orientation-dependent ��r
−r� , t− t� ,� ,��� memory function is related to the torque-
torque correlation function through the density functional
theory by following the fluctuation dissipation theorem
�46,48�. Note that �l

sing�z� contains the integration over the
wave vector dependence. The slowdown of the relaxation of
single particle OTCF is related to the nature of the compo-
nent of the dynamics structure factor.

It is important to note that the rotational friction depends
on the rank of the OTCF, and this friction differs from rank
to rank because of vastly different wave vector dependence
of F�m�k , t� for different � particularly at low wave numbers.
Near the I-N transition, due to existence of large wavelength
fluctuations, the k→0 component of the F20�k , t� undergoes
a very slow decay and this is responsible for the slow down
of the relaxation of C2

s�t�. In this limit, the expression for
Flm�k , t� is given by �46�

Flm�k,t� = Slm�k�e−l�l+1�DRt/Slm�k�, �16�

where Slm�k� is the orientation dependent structure factor and
DR is the rotational diffusion coefficient. The Slm�k� is given
by the expression

Slm�k� = �ek·�r−r��Ylm��,0�Ylm���,t�� . �17�

Near the I-N transition, S20�k� grows as 1/B2k2, where

B2 =
�

4�
�d2cll�m�k�

dk2 �
k=0

.

The growth of orientational pair correlation with the ap-
proach of the I-N transition is evident in Fig. 9. Note that
starting from density �*�0.305, the orientational pair corre-

FIG. 9. The g220 component of the pair correlation function
versus the pair separation at several densities across the I-N transi-
tion. The curves staring from the bottom to the top are correspond-
ing to densities between �*=0.285 and �*=0.315 on a grid of ��*

=0.005.
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lation function becomes nonzero even at large intermolecular
separations. This is reflected in the rapid growth of S20�k� as
k→0 near the I-N transition.

Combination of the above factors provides the following
simple expression for the frequency dependence of the sin-
gular part of the memory kernel

�2
sing�z� = A/�z , �18�

where A is a numerical constant �27�. Note that such a power
law dependence is absent from all odd � th �� but in prin-
ciple present in all the even �. However, as � increases, the
decay becomes increasingly inertial and the role of intermo-
lecular correlation becomes weak beyond �=4. But for �
=2 and �=4, the inverse square root dependence of the ro-
tational memory function leads to a markedly slower power
law decay as seen from Fig. 2�b�.

Physically, this power law is a manifestation of the
growth of the pseudonematic domains near the I-N phase
boundary. A particle inside this domain feels a localizing
potential that makes its rotation difficult. However, even
within such a domain, a rotation of an individual particle by
180° �that is, by �� is possible because of the up-down sym-
metry of the particle. However, in contradiction to the con-
ceptualization prevalent in supercooled liquid literature, here
such a half-cycle rotation relaxes only the odd rank correla-
tion functions, leaving the even ranked ones unchanged. In
the MCT description, the influence of the localizing potential
enters through the two-particle direct correlation function
�c��m�k�� and the static structure factor S�m�k�. Just as in the
Maier-Saupe theory, the present mean-field theory descrip-
tion can capture the rank dependence of the effective local-
izing potential. The above mode coupling theory analysis is
by no means complete, but it provides a semi-quantitative
explanation of the observed rank dependence of the orienta-
tional correlation time near the I-N transition, in terms of the
rapid growth of equilibrium orientational pair correlation
function.

V. CONCLUDING REMARKS

Let us first summarize the main results presented here. We
study a system of Gay-Berne model mesogens along an iso-
therm and an isochore separately across its isotropic-nematic
phase transition to investigate the rank dependent single-
particle orientational relaxation from the perspective of the
Debye behavior. Our results demonstrate that orientational
correlation that starts growing near the I-N transition as it is
approached from the isotropic side induces a marked devia-
tion from the Debye behavior. We present a theoretical
analysis of our results within the framework of the mode-
coupling theory. This mode coupling theory analysis pro-

vides a semiquantitative explanation of the observed rank
dependence of the orientational correlation time near the
I-N transition. This explanation does not invoke the exis-
tence of any large scale angular jump motion that random-
izes and thereby leads to the decay of correlation of all ranks
with the same rate. Instead, our analysis attributes the non-
Debye rank dependence to the rapid growth of equilibrium
orientational pair correlation function.

It is interesting to contrast the breakdown of the DSE
relationship observed in the present study with what is found
in supercooled molecular liquids. As already mentioned, in
the supercooled liquids the DSE relationship is often dis-
cussed in the context of translation-rotation decoupling in the
sense that the translational diffusion gets decoupled from the
shear viscosity in deeply supercooled regime while the rota-
tional diffusion remains coupled to it. In the cases where the
DSE relationship has been found to break down, �l fails to
track the rapid growth in shear viscosity resulting in a fall of
the ratio �l /� �22�. The fall is more pronounced for �1 than
�2, which can be attributed to the fact that the advent of the
jump motion at low temperatures affects �1 more. In contrast,
there is no signature of decoupling of the translational diffu-
sion from the shear viscosity as the I-N transition is ap-
proached from the isotropic side. Instead, the rotational dif-
fusion slows down considerably. This is understandable on
the basis of the rapid growth of orientational pair correlation
in the vicinity of the I-N transition. No such growth occurs in
the spatial correlation. Thus, stress-stress time correlation
function decays rapidly to zero even near the I-N phase
boundary and no particular growth is observed in shear vis-
cosity. Translational diffusion also does not suffer from any
substantial fall even though anisotropy sets in with facile
translation diffusion parallel to the director as compared to
the one perpendicular to it �35�. However, the intriguing as-
pect is that it is �2 that is more affected in the vicinity of the
I-N transition than �1. In general, the even rank OTCFs get
affected more by the growth of orientational correlation than
the preceding odd ranked functions.

In view of the results presented here, a comparative study
between dielectric relaxation �which essentially measures the
�=1 OTCF� and light scattering or fluorescence depolariza-
tion or NMR experiments �all of these measure the �=2
OTCF� would be a worthwhile exercise. In fact, a detailed
theoretical analysis of dielectric relaxation near the I-N
phase boundary seems to be lacking.
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